C3	$-0.0451(4)$	$0.0625(2)$	$0.7684(4)$	$0.041(1)$
C4	$-0.0102(4)$	$0.1326(2)$	$0.7594(4)$	$0.046(1)$
C5	$0.1505(3)$	$0.2192(2)$	$0.8507(5)$	$0.049(1)$
C6	$0.2263(4)$	$0.2457(2)$	$0.9897(6)$	$0.062(1)$
C7	$0.3162(4)$	$0.1954(2)$	$1.0602(5)$	$0.062(2)$
C8	$0.2403(3)$	$0.1336(2)$	$1.0990(4)$	$0.048(1)$
C9	$0.1703(3)$	$0.1059(2)$	$0.9554(4)$	$0.038(1)$
C10	$0.0747(3)$	$0.1575(2)$	$0.8909(4)$	$0.040(1)$
C11	$0.1827(3)$	$-0.0089(2)$	$1.0204(4)$	$0.045(1)$
C12	$0.1204(3)$	$-0.0736(2)$	$1.0540(4)$	$0.043(1)$
C13	$0.1805(4)$	$-0.1281(2)$	$0.9907(4)$	$0.054(1)$
C14	$0.1260(5)$	$-0.1890(2)$	$1.0121(5)$	$0.068(2)$
C15	$0.0131(5)$	$-0.1963(2)$	$1.1009(6)$	$0.070(2)$
C16	$-0.0436(5)$	$-0.1433(2)$	$1.1711(5)$	$0.068(2)$
C17	$0.0093(4)$	$-0.0822(2)$	$1.1475(5)$	$0.055(1)$
C21	$-0.1413(3)$	$0.0614(1)$	$1.0438(4)$	$0.038(1)$
C22	$-0.1116(4)$	$0.0849(2)$	$1.1913(4)$	$0.047(1)$
C23	$-0.2121(5)$	$0.1085(2)$	$1.2875(5)$	$0.063(2)$
C24	$-0.3427(4)$	$0.1079(2)$	$1.2391(5)$	$0.069(2)$
C25	$-0.3738(4)$	$0.0835(2)$	$1.0951(6)$	$0.066(2)$
C26	$-0.2747(3)$	$0.0603(2)$	$0.9979(5)$	$0.050(1)$

Table 2. Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$)

$\mathrm{O} 4-\mathrm{C} 4$	$1.210(5)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.475(4)$
$\mathrm{O} 11-\mathrm{C} 11$	$1.235(4)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.484(4)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$122.1(3)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$	$118.2(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$115.1(3)$	$\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 26$	$118.9(3)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 10$	$122.8(4)$	$\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$123.1(3)$
$\mathrm{C} 11-\mathrm{Cl}-\mathrm{C} 17$	$124.0(4)$	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26$	$118.0(3)$
$\mathrm{C} 11-\mathrm{Cl} 2-\mathrm{C} 13$	$117.7(3)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	$-22.8(5)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$-148.9(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$11.0(4)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-56.7(4)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$-69.1(4)$	$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C}-\mathrm{C} 7$	$54.0(5)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$133.7(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C}-\mathrm{C} 8$	$-53.5(5)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$41.4(4)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$56.6(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$-6.7(5)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-58.2(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-59.2(4)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$-49.4(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$-131.7(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$58.2(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$21.9(5)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$139.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$158.3(3)$	$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-39.8(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$31.8(4)$		

The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985). All non-H atoms were refined with anisotropic displacement parameters. All H atoms were obtained from difference Fourier maps and were included in the structure-factor calculations; they were given displacement parameters equal to $1.1 U_{\mathrm{eq}}$ of their respective carrier atom, but their parameters were not refined (Sheldrick, 1976). The geometrical calculations were performed using PARST (Nardelli, 1983).

The authors thank the UGC, India, for the award of a teacher fellowship to AT and financial assistance to KSRR, Dr V. Parthasarathi, Bharathidasan University, for valuable discussions, and the referees for useful comments.

[^0]
References

Aroney, M. \& Le Fèvre, R. J. W. (1960). J. Chem. Soc. pp. 21612168.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2643-2644

o-Phenylenediammonium Bis(hydrogensulfide)

O. V. Shishiin, N. N. Kolos and V. D. Orlov
Department of Organic Chemistry, Kharkov University, Svoboda Square 4, 310077 Kharkov, Ukraine

V. P. Kuznetsov and E. E. Lakin

Institute for Single Crystals, Academy of Sciences
of the Ukraine, Lenin Avenue 50, 310001 Kharkov, Ukraine
(Received 6 January 1993; accepted 22 May 1995)

Abstract

The title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} .2 \mathrm{HS}^{-}$, forms crystals with $\mathrm{C} 2 / \mathrm{c}$ symmetry. The anionic HS^{-}groups are located near the NH_{3}^{+}substituents and are oriented practically perpendicular to the benzene ring.

Comment

The molecule in the unit cell of the title compound, (I), is situated on the twofold axis, which passes through the midpoints of the $\mathrm{C}(4 A)-\mathrm{C}(4 B)$ and $\mathrm{C}(1 A)-\mathrm{C}(1 B)$ bonds.

(I)

The presence of H atoms at every N atom and the $\mathrm{C}(4 A)-\mathrm{N}(1 A)$ bond length of $1.457(2) \AA$ indicate protonation of both amino groups. The anionic HS ${ }^{-}$groups are oriented practically perpendicular to the benzene ring [$\left.104(1)^{\circ}\right]$. The short interatomic distances $\mathrm{N}(1 A) \cdots \mathrm{S}(A)[3.11(1) \AA]$ and $\mathrm{H} 1(\mathrm{~N} 1 A) \cdots \mathrm{S}(A)$ [$2.13(1) \AA$] confirm the existence of a strong electrostatic interaction between the dication and the anions.

There are no intermolecular distances shorter than the sum of the van der Waals radii. Fig. 1 shows a perspective view of (I), with the atom-numbering scheme.

Fig. 1. A view of the title molecule with the atom-numbering scheme. Atoms are represented as 50% probability ellipsoids.

Experimental

Dark red crystals suitable for X-ray study were grown from a 2-propanol solution by slow evaporation of the solvent.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} .2 \mathrm{HS}^{-}$
$M_{r}=176.31$
Monoclinic
C2/c
$a=7.341$ (1) \AA
$b=14.518$ (3) \AA
$c=8.010(2) \AA$
$\beta=94.01$ (3) ${ }^{\circ}$
$V=851.6(9) \AA^{3}$
$Z=4$
$D_{x}=1.375 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P3/PC diffracto eter
$2 \theta-\theta$ scans
Absorption correction: none
1917 measured reflections
1804 independent reflections 1119 observed reflections

$$
[F>6 \sigma(F)]
$$

Refinement

Refinement on F
$R=0.037$
$w R=0.043$
$S=1.73$
1119 reflections
64 parameters
H atoms riding with fixed isotropic U

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 9 reflections
$\theta=12-13^{\circ}$
$\mu=0.554 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$
Dark red
$R_{\text {int }}=0.0259$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 23$
$l=-12 \rightarrow 12$
2 standard reflections monitored every 98 reflections intensity decay: 7\%
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0003 F_{o}^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.197$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.47 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
	\boldsymbol{y}			
\mathbf{S}	$0.0232(1)$	$0.1767(1)$	$-0.0099(1)$	$0.037(1)$
$\mathrm{N}(1)$	$-0.1880(2)$	$0.3323(1)$	$-0.2069(2)$	$0.035(1)$
$\mathrm{C}(1)$	$-0.0885(3)$	$0.5828(1)$	$-0.2253(2)$	$0.053(1)$
$\mathrm{C}(2)$	$-0.1787(2)$	$0.5008(1)$	$-0.2017(2)$	$0.042(1)$
$\mathrm{C}(4)$	$-0.0889(2)$	$0.4181(1)$	$-0.2264(2)$	$0.029(1)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{C}(4)-\mathrm{C}\left(4^{i}\right)$	$1.384(2)$	$\mathrm{C}(4)-\mathrm{C}(2)$	$1.391(2)$
$\mathrm{C}(1)-\mathrm{C}\left(1^{1}\right)$	$1.384(4)$	$\mathrm{C}(2)-\mathrm{C}(1)$	$1.381(2)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.457(2)$		
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	$118.6(1)$	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.2(1)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$	$120.3(1)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$120.5(1)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}\left(4^{i}\right)$	$121.1(1)$		
Symmetry codes: (i) $-x, y,-\frac{1}{2}-z$			

The structure was solved by direct methods using SHELXTLPlus (Sheldrick, 1991). After non-H atoms were refined anisotropically, positions of all H atoms were located from a ΔF map and included in the refinement with fixed isotropic displacement parameters. Ten strong reflections with ($F_{o^{-}}$ $\left.F_{c}\right) / \sigma>4.0$ were excluded from the last refinement cycles.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: VS1009). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square. Chester CH1 2HU, England.

References

Sheldrick, G. M. (1991). SHELXTL-Plus. PC Version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 2644-2647

Muscarinic Antagonist: 8,8-Dimethyl-3' $\mathbf{3}^{\prime} \mathbf{3}^{\prime}$ -diphenylspiro(8-azoniabicyclo[3.2.1]octane$3,2^{\prime}$ - $\mathbf{1}^{\prime}, 3^{\prime}$-dioxolane) -4^{\prime}-one Iodide

Karla Frydenvang and Michelangelo Castiglione \dagger

Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
(Received 10 May 1995; accepted 3 July 1995)

Abstract

The molecular structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}^{+} . \mathrm{I}^{-}$, BVT44Me, has been compared to that of the related compound 8,8-dimethyl-3,3-diphenyl-

[^1]
[^0]: Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, least-squares-planes data and torsion angles have been deposited with the IUCr (Reference: VJ1020). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: \dagger ERASMUS student from the University of Bologna, Italy.

